Unique Paper Code	:	62354443_OC
Name of the Paper	:	Analysis
Name of the Course	:	B.A.(Prog.)
Semester	:	IV
Duration	:	3 Hours
Maximum Marks	:	75

Instructions for Candidates

Attempt any four questions. All questions carry equal marks.

1. If *a*, *b* are real numbers, prove the following:

(i) If a + b = 0, then b = -a

(ii) - (-a) = a

(iii) (-a).(-b) = a.b

Which of the following sets are bounded below, which are bounded above and which are neither bounded below nor bounded above:

(i) $\{-1, -2, -3, \dots -n, \dots\}$

(ii)
$$\{-1, 2, -3, 4, \dots (-1)^n n, \dots\}$$

(iii)
$$\{2, \frac{3}{2}, \frac{4}{3}, \cdots, (\frac{n+1}{n})\}$$

(iv) $\{3, 3^2, 3^3, \dots, 3^n, \dots\}$

(v)
$$\{1, \frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}, \dots\}$$

(vi)
$$\{-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots, \frac{(-1)^n}{n}, \dots\}$$
.

Show that the set of natural number was no limit points.

2. Show that the function define below is not continuous anywhere on the real line.

$$f(x) = \begin{cases} 1 & \text{if x is irrational} \\ -1 & \text{if x is rational} \end{cases}$$

Show that the function $(x) = \frac{1}{x}$, is uniformly continuous on the set $[a, \infty)$, where a is a positive constant.

Show that the set of rational numbers is neither open nor closed.

3. Use the definition of limit of a sequence to establish the following limits as n tends to ∞ :

(i)
$$\lim \left(\frac{n}{n^2 + 1}\right) = 0$$

(ii)
$$\lim \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$$

Discuss the convergence of the sequence $\left(\frac{11^{2n}}{7^{3n}}\right)$.

Show that the sequence (x_n) defined by

$$x_1 = a > 0, \ x_{n+1} = \frac{2 x_n}{1 + x_n}, \ n > 1.$$

Download all NOTES and PAPERS at StudentSuvidha.com

Is bounded and monotone. Also find the limit of the sequence.

4. Give an example of an unbounded sequence that has a convergent subsequence.

Show that the sequence (x_n) defined by

$$x_n = \frac{1}{9} + \frac{1}{13} + \frac{1}{17} \dots + \frac{1}{4n+5}$$

(iii) $\frac{2, 4, 6, \dots (2n)}{3.5.7 \cdots (2n+1)}$

is not Cauchy.

Calculate the value of $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{2n}$ 5. Discuss the convergence the series $\sum x_n$ where x_n is defined as $x_n = \sin \frac{n\pi}{2}$. Test for convergence of the series $\sum \frac{(2n)!}{(n!)^2}$ Discuss the convergence of the series $\frac{\log 2}{2^2} - \frac{\log 3}{3^2} + \frac{\log 4}{4^2} - + \cdots$

6. Establish the convergence or the divergence of the series whose nth term is:

(i)
$$\frac{1}{(n+1)(n+2)}$$
 (ii) $(n(n+1))^{-\frac{1}{2}}$

Let f(x) = |x| for $-1 \le x \le 2$. Calculate $L(f; \mathbb{P})$ and $U(f; \mathbb{P})$ for the following partitions:

(i)
$$P =: (-1, 0, 1, 2)$$
 (ii) $P =: (-1, -\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, 2)$
Is the function Riemann integrable? Justify.

Is the function Riemann integrable? Justify.